Time Coupled Diffusion Maps
نویسندگان
چکیده
We consider a collection of n points in R measured at m times, which are encoded in an n × d × m data tensor. Our objective is to define a single embedding of the n points into Euclidean space which summarizes the geometry as described by the data tensor. In the case of a fixed data set, diffusion maps (and related graph Laplacian methods) define such an embedding via the eigenfunctions of a diffusion operator constructed on the data. Given a sequence of m measurements of n points, we construct a corresponding sequence of diffusion operators and study their product. Via this product, we introduce the notion of time coupled diffusion distance and time coupled diffusion maps which have natural geometric and probabilistic interpretations. To frame our method in the context of manifold learning, we model evolving data as samples from an underlying manifold with a time dependent metric, and we describe a connection of our method to the heat equation over a manifold with time dependent metric.
منابع مشابه
Diffusive transport and self-consistent dynamics in coupled maps.
The study of diffusion in Hamiltonian systems has been a problem of interest for a number of years. In this paper we explore the influence of self-consistency on the diffusion properties of systems described by coupled symplectic maps. Self-consistency, i.e., the backinfluence of the transported quantity on the velocity field of the driving flow, despite of its critical importance, is usually o...
متن کاملDynamics of conformal maps for a class of non-Laplacian growth phenomena.
Time-dependent conformal maps are used to model a class of growth phenomena limited by coupled non-Laplacian transport processes, such as nonlinear diffusion, advection, and electromigration. Both continuous and stochastic dynamics are described by generalizing conformal-mapping techniques for viscous fingering and diffusion-limited aggregation, respectively. The theory is applied to simulation...
متن کاملGENERAL SYNCHRONIZATION OF COUPLED PAIR OF CHAOTIC ONE-DIMENSIONAL GAUSSIAN MAPS
In this paper we review some recent ideas of synchronization theory. We apply this theory to study the different synchronization aspects of uni-directionally coupled pair of chaotic one-dimensional Gaussian maps.
متن کاملUnique common coupled fixed point theorem for four maps in $S_b$-metric spaces
In this paper we prove a unique common coupled fixed point theorem for two pairs of $w$-compatible mappings in $S_b$-metric spaces satisfying a contrctive type condition. We furnish an example to support our main theorem. We also give a corollary for Junck type maps.
متن کاملCoupled coincidence point theorems for maps under a new invariant set in ordered cone metric spaces
In this paper, we prove some coupled coincidence point theorems for mappings satisfying generalized contractive conditions under a new invariant set in ordered cone metric spaces. In fact, we obtain sufficient conditions for existence of coupled coincidence points in the setting of cone metric spaces. Some examples are provided to verify the effectiveness and applicability of our results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1608.03628 شماره
صفحات -
تاریخ انتشار 2014